Borbin the đŸ±

Bellevue Connector Bridge

20 August 2025


Die Bellevue Connector Bridge – Licht, Schatten und der perfekte Moment

Die Bellevue Connector Bridge ist Teil eines stĂ€dtebaulichen Konzepts, das FußgĂ€nger und Radfahrer besser mit dem Stadtzentrum verbindet. Sie steht exemplarisch fĂŒr moderne Infrastruktur, die nicht nur funktional, sondern auch Ă€sthetisch ansprechend gestaltet ist.

Am Vormittag liegt die Seite der BrĂŒcke mit dem Mural1 im Schatten:


Erst am Nachmittag fĂ€llt Sonnenlicht direkt auf das Mural. Allerdings werfen dann auch die architektonischen Elemente der BrĂŒcke markante Schatten auf die Wand.

Kurz nach Mittag entsteht ein besonderer Moment: Die Sonne steht in einem Winkel, bei dem das Mural vollstĂ€ndig aus dem Schatten tritt, wĂ€hrend die BrĂŒckenarchitektur noch keine Schatten wirft. Ich habe diesen seltenen Lichtmoment genutzt, um das Panorama aufzunehmen. Fast so selten wie eine Sonnenfinsternis, nur ohne Schutzbrille und mit deutlich besserer Auflösung.

Die Nord-SĂŒd-Ausrichtung sorgt dafĂŒr, dass die Sonne einmal tĂ€glich exakt genug steht, um das Mural fĂŒr wenige Minuten wie eine BĂŒhne auszuleuchten. Ein Moment, in dem Architektur und Sonnenstand kurz in Konjunktion treten.


Interactive Panorama Bellevue Connector Bridge


1/800s ISO 100/21° f=7,5mm



Ein Blick hinter das GelÀnder


Google Straßenansicht


Und nebendran rauscht ein Zug vorbei. Vermutlich weil der LĂ€rmpegel noch nicht ganz bei 'Großstadt' war.


Mural als lineares Panorama:

1/320s f/6,3 ISO 100/21° 18-140mm f/3,5-6,3 VR f=18mm/27mm


Skaliert auf 7k×500 fĂŒr die Webansicht:


GrĂ¶ĂŸere Version mit 27k×2k, 13MB



  1. Ein Mural ist ein großflĂ€chiges WandgemĂ€lde, das direkt auf eine Wand oder andere architektonische OberflĂ€che gemalt oder aufgebracht wird. 


Lineares Panorama

20 August 2025



Lineares Panorama: Eine Alternative zur klassischen Drehung

Die klassische Panorama-Fotografie basiert auf der Drehung der Kamera um ihren Nodalpunkt. Diese Technik ermöglicht beeindruckende Rundumaufnahmen und funktioniert besonders gut bei Szenen mit großer Tiefenausdehnung. Doch was passiert, wenn das Motiv selbst langgestreckt ist, wie etwa ein WandgemĂ€lde oder eine HĂ€userfront, und sich nicht sinnvoll durch Rotation erfassen lĂ€sst?

In solchen FÀllen bietet das lineare Panorama eine gute Alternative: Statt die Kamera zu drehen, wird sie entlang einer geraden Linie bewegt. Diese Methode eröffnet neue gestalterische Möglichkeiten und stellt besondere Anforderungen an Projektion, Perspektive und Technik. Der folgende Beitrag beleuchtet die Unterschiede zwischen klassischen und linearen Panoramen und zeigt anhand eines konkreten Beispiels, wie ein lineares Panorama entsteht.


Projektionstypen in der Panorama-Fotografie

FĂŒr ein Bild mit einem Bildwinkel bis etwa 110° kann die rectilineare Abbildung verwendet werden1. Diese Projektion bewahrt gerade Linien und eignet sich besonders fĂŒr Architektur- oder Landschaftsaufnahmen mit moderatem Blickwinkel. Sobald der Bildwinkel diesen Bereich ĂŒberschreitet, treten bei der rectilinearen Projektion zunehmend starke Verzerrungen auf, insbesondere an den BildrĂ€ndern. Gerade Linien wirken dann ĂŒbermĂ€ĂŸig gedehnt, und das Bild verliert an natĂŒrlicher Wirkung.

FĂŒr grĂ¶ĂŸere Blickwinkel sind daher die Ă€quirektangulare oder zylindrische Projektion besser geeignet. Sie verteilen die Verzerrung gleichmĂ€ĂŸiger und ermöglichen ein harmonischeres Gesamtbild, besonders bei Rundum-Panoramen oder Szenen mit einem Sichtfeld ĂŒber 180°.

Beim klassischen Panorama wird die Kamera fĂŒr die einzelnen Bilder um ihren Nodalpunkt gedreht, um Parallaxfehler zu vermeiden.


Vergleich von Projektionstypen
Projektionstyp Typischer Bildwinkel Abbildungseigenschaften Ideale Einsatzbereiche
Rectilinear < 110° Gerade Linien bleiben erhalten; starke Randstreckung ab 110° Architektur, Landschaften mit moderatem Sichtfeld
Zylindrisch 90°–360° Nur vertikale Linien bleiben gerade Weite Panoramen, Rundum-Szenen, Stadtansichten, Naturvistas
Äquirektangular 180°–360° GleichmĂ€ĂŸige Abbildung in beiden Achsen; geeignet fĂŒr Kugelpanoramen 360°-Panoramen, virtuelle Touren, immersive Szenen


WĂ€hrend die klassische Panorama-Technik bei weitwinkligen Szenen hervorragend funktioniert, stĂ¶ĂŸt sie bei langgestreckten Motiven wie WandgemĂ€lden oder HĂ€userfronten entlang einer Straße an ihre Grenzen. Die Drehung um den Nodalpunkt fĂŒhrt hier zu perspektivischen Verzerrungen und einem unnatĂŒrlichen Bildaufbau, da sich die rĂ€umliche Tiefe des Motivs nicht gleichmĂ€ĂŸig erfassen lĂ€sst.

Hier setzt das lineare Panorama an: Statt die Kamera zu drehen, wird sie linear entlang des Motivs mit konstantem Abstand und paralleler Ausrichtung bewegt. Das Ergebnis ist ein visuelles Band, das die rĂ€umliche KontinuitĂ€t bewahrt und das Motiv in seiner gesamten LĂ€nge zeigt. Diese Technik eignet sich besonders fĂŒr Szenen mit geringer Tiefenausdehnung und großer horizontaler Ausdehnung, bei denen eine klassische Panoramaaufnahme zu perspektivischen BrĂŒchen fĂŒhren wĂŒrde.


Die lineare Methode bringt jedoch eigene technische und gestalterische Herausforderungen mit sich, die bei der Planung und Umsetzung berĂŒcksichtigt werden mĂŒssen:

  • Parallaxfehler durch hervorstehende Objekte wie StĂŒhle, Autos oder Personen, die sich bei der Bewegung der Kamera unterschiedlich ĂŒberlagern
  • Perspektivische Verzerrungen, da sich die Kamera seitlich bewegt und dadurch die Fluchtlinien des Motivs beeinflusst werden
  • Bewegte Elemente wie Autos oder FußgĂ€nger, die zu Stitchingfehlern oder Geisterbildern fĂŒhren können
  • LichtverĂ€nderungen entlang der Strecke, etwa durch Schattenwurf, unterschiedliche Beleuchtung oder wechselnde Wetterbedingungen


Lineares Panorama am Beispiel eines Murals

In diesem Projekt wird ein Mural2 dokumentiert, das seitlich im Inneren der Bellevue Connector Bridge angebracht ist und sich ĂŒber deren gesamte LĂ€nge erstreckt. Es zeigt eine zusammenhĂ€ngende Szene, die sich nur durch eine lineare Kamerabewegung vollstĂ€ndig und verzerrungsfrei erfassen lĂ€sst.


Denn das Wandbild passt nicht in ein einziges (Fisheye) Bild.
Und das GelĂ€nder passt nicht zur Idee fĂŒr mehr Abstand einfach mal eben drĂŒberzusteigen.


Interactive Panorama Bellevue Connector Bridge


Siehe Bellevue Connector Bridge


Um das Mural abzubilden, wird die Kamera linear entlang des Motivs mit konstantem Abstand und paralleler Ausrichtung bewegt3.


Wie beim klassischen Panorama sind manuelle Einstellungen fĂŒr Belichtung, Weißabgleich und Fokus entscheidend fĂŒr konsistente Ergebnisse. Weiterhin ist zu beachten:

  • Kamerabewegung: Linear entlang der Straße – z. B. auf einem Slider, Fahrrad oder zu Fuß mit Markierungen
  • Konstanter Abstand: Möglichst gleichbleibend, z. B. 5 m zur HĂ€userfront
  • Horizontale Ausrichtung: Kamera bleibt parallel zum Motiv
  • Überlappung: 20–50 % zwischen den Bildern


Die Rectilinearprojektion fĂŒhrt zu Verzerrungen in den Randbereichen – Ă€hnlich wie bei einem Weitwinkelobjektiv.

Um ein lineares Panorama zu erstellen, wird eine (fast) orthogonale Projektion verwendet. Der resultierende kleine Bildwinkel minimiert Verzerrungen. Dadurch lassen sich Panoramen erstellen, die aufgrund des erforderlichen großen Blickwinkels sonst nicht abbildbar wĂ€ren.
Die Optimierung ergab in diesem Beispiel eine effektive Brennweite von etwa 1400 mm, entsprechend einem Bildwinkel von etwa horizontal 8° und vertikal 1°.

Dasselbe Verfahren findet auch beim Zusammensetzen von Scans Anwendung (Mosaik). Die dabei verwendete orthogonale Projektion ist der Grund, warum das mit Fisheye-Bildern nicht funktioniert. Sie kann nur auf rectilineare Bilder angewendet werden, genauso wenig wie ein gekrĂŒmmter Spiegel parallele Linien korrekt reflektieren kann.


Panorama-Erstellung in PTGui

Im ersten Schritt werden sÀmtliche Bilder in PTGui importiert, um mit der Panorama-Erstellung zu beginnen.


FĂŒr jedes Einzelbild werden horizontale (grĂŒn) und vertikale (rot) Kontrollpunkte gesetzt.
Zwischen den Bildern werden zusĂ€tzlich horizontale Kontrollpunkte (gelb) eingefĂŒgt, um eine gleichmĂ€ĂŸige Ausrichtung des Panoramas sicherzustellen. Auch zwischen dem ersten und letzten Bild werden horizontale Kontrollpunkte gesetzt, um die Gesamtgeometrie auszurichten.


FĂŒr jedes einzelne Bild werden horizontale Kontrollpunkte gesetzt.


ZusĂ€tzlich zu den normalen Kontrollpunkten zwischen den Bildern werden horizontale Kontrollpunkte eingefĂŒgt.


Die Projektion wird auf “Rectilinear” gesetzt. FĂŒr alle Bilder außer dem ersten Bild wird die individuelle Optimierung fĂŒr Objektiv und Verschiebung gesetzt.


ZunĂ€chst ohne Blickwinkel, Parameter ‚b‘ und Verschiebung optimieren, um die Bilder grob auszurichten.
Dann wird mit Blickwinkel, Parameter ‚b‘ und Verschiebung optimiert.


Ein kleiner horizontaler und vertikaler Bildwinkel reduziert Verzerrungen an den BildrĂ€ndern. Bei einer Optimierung mit der tatsĂ€chlichen Objektivbrennweite lĂ€ge der Blickwinkel ĂŒber 180 Grad und das Panorama ließe sich nicht korrekt erzeugen.


Das Ergebnis: Ein lineares Panorama in voller LĂ€nge

Aus 11 Einzelbildern entsteht ein durchgehendes Panorama mit 44135 × 3242 Bildpunkten (143,1 MP, 61,4 MB), das die gesamte Szene in hoher Detailtreue abbildet. Die Aufnahme wurde mit der Z50 II bei 18 mm Brennweite erstellt und anschließend gemĂ€ĂŸ der beschriebenen Schritte in PTGui zusammengesetzt.

1/320s f/6,3 ISO 100/21° 18-140mm f/3,5-6,3 VR f=18mm/27mm


Skaliert auf 7k×500 fĂŒr die Webansicht:


GrĂ¶ĂŸere Version mit 27k×2k, 13MB



  1. Ein 14mm-Objektiv an Vollformat liefert etwa 104° horizontalen Bildwinkel.↩

  2. Ein Mural ist ein großflĂ€chiges WandgemĂ€lde, das direkt auf eine Wand oder andere architektonische OberflĂ€che gemalt oder aufgebracht wird.↩

  3. Ein Abschnitt wurde mit verkĂŒrztem Wegabstand aufgenommen, da jedes Bild drei Segmente enthĂ€lt und die Gesamtanzahl der Segmente kein Vielfaches von drei ist.↩

Linear Panorama: An Alternative to Classical Rotation

Classical panoramic photography relies on rotating the camera around its nodal point. This technique enables impressive 360° captures and works especially well for scenes with significant depth. But what if the subject itself is elongated—like a mural or a row of buildings—and cannot be effectively captured through rotation?

In such cases, the linear panorama offers a compelling alternative: instead of rotating the camera, it is moved along a straight path. This method opens up new creative possibilities and introduces unique challenges in projection, perspective, and technique. The following article explores the differences between classical and linear panoramas and illustrates how a linear panorama is created using a real-world example.


Projection Types in Panoramic Photography

For images with a field of view up to approximately 110°, the rectilinear projection can be used1. This projection preserves straight lines and is ideal for architectural or landscape shots with moderate angles. Once the field of view exceeds this range, rectilinear projection introduces strong distortions, especially at the edges. Straight lines appear overly stretched, and the image loses its natural appearance.

For wider fields of view, equirectangular or cylindrical projections are better suited. These distribute distortion more evenly and produce a more harmonious overall image, especially for full panoramas or scenes with a field of view over 180°.

In classical panoramas, the camera is rotated around its nodal point to avoid parallax errors.


Comparison of Projection Types
Projection type Typical image angle Mapping properties Ideal areas of application
Rectilinear < 110° Straight lines are preserved; Strong edge stretching from 110° Architecture, landscapes with a moderate field of view
Cylindrical 90°–360° Only vertical lines remain straight Wide panoramas, all-around scenes, cityscapes, nature vistas
Equirectangular 180°–360° Uniform image in both axes; suitable for spherical panoramas 360° panoramas, virtual tours, immersive scenes


While classical panorama techniques work well for wide-angle scenes, they struggle with elongated subjects like murals or building facades along a street. Rotating around the nodal point introduces perspective distortions and an unnatural composition, as the spatial depth of the subject cannot be evenly captured.

This is where the linear panorama comes in: instead of rotating the camera, it is moved linearly along the subject with constant distance and parallel alignment. The result is a visual ribbon that preserves spatial continuity and displays the subject in its full length. This technique is especially suitable for scenes with low depth and large horizontal extent, where classical panoramas would cause perspective breaks.


However, the linear method introduces its own technical and creative challenges:

  • Parallax errors from protruding objects like chairs, cars, or people that overlap differently during camera movement
  • Perspective distortions due to lateral camera movement affecting vanishing lines
  • Moving elements like cars or pedestrians causing stitching errors or ghosting
  • Lighting changes along the path, such as shadows, varying illumination, or changing weather


Linear Panorama Example: A Mural

This project documents a mural2, spanning its entire length inside the Bellevue Connector Bridge. It depicts a continuous scene that can only be captured fully and distortion-free through linear camera movement.


The mural doesn’t fit into a single (fisheye) image. And the railing isn’t suitable for simply stepping over to gain more distance.


Interactive Panorama Bellevue Connector Bridge


See Bellevue Connector Bridge


To capture the mural, the camera is moved linearly along the subject with constant distance and parallel alignment3.


As with classical panoramas, manual settings for exposure, white balance, and focus are crucial for consistent results. Additionally:

  • Camera movement: Linear along the street – e.g., on a slider, bicycle, or on foot with markers
  • Constant distance: Ideally consistent, e.g., 5 m from the building facade
  • Horizontal alignment: Camera remains parallel to the subject
  • Overlap: 20–50% between images


The rectilinear projection causes edge distortions—similar to a wide-angle lens.

To create a linear panorama, a (nearly) orthogonal projection is used. The resulting small field of view minimizes distortions. This allows panoramas to be created that would otherwise be impossible due to the required wide field of view.

In this example, optimization resulted in an effective focal length of approximately 1400 mm, corresponding to a field of view of about 8° horizontal and 1° vertical.

This same technique is used in scan stitching (mosaics). The orthogonal projection applied here is why fisheye images don’t work. It can only be applied to rectilinear images—just as a curved mirror cannot reflect parallel lines correctly.


Panorama Creation in PTGui

The first step is importing all images into PTGui to begin panorama creation.


For each image, horizontal (green) and vertical (red) control points are set. Horizontal control points (yellow) are also added between images to ensure consistent alignment. Horizontal control points are also placed between the first and last image to align the overall geometry.


Each image receives horizontal control points.


In addition to regular control points between images, horizontal control points are added.


The projection is set to “Rectilinear.” For all images except the first, individual optimization for lens and shift is applied.


First, optimize without field of view, parameter ‘b’, and shift to roughly align the images. Then optimize with field of view, parameter ‘b’, and shift.


A small horizontal and vertical field of view reduces edge distortions. If optimized using the actual lens focal length, the field of view would exceed 180°, making correct panorama creation impossible.


The Result: A Full-Length Linear Panorama

From 11 individual images, a continuous panorama of 44135 × 3242 pixels (143.1 MP, 61.4 MB) is created, capturing the entire scene in high detail. The shot was taken with the Z50 II at 18 mm focal length and stitched in PTGui as described.

1/320s f/6.3 ISO 100/21° 18-140mm f/3.5-6.3 VR f=18mm/27mm


Scaled to 7k×500 for web view:


Larger version with 27k×2k, 13MB



  1. A 14mm lens on full-frame delivers approximately 104° horizontal field of view.↩

  2. A mural is a large-scale wall painting applied directly to a wall or architectural surface.↩

  3. One section was captured with a shortened path distance, as each image contains three segments and the total number of segments is not a multiple of three.↩


Use Case for Transverse Mercator Projection ✅

16 August 2025


Imagine standing in front of a pastry display – the kind you would find in an Italian cafĂ©, filled with cakes behind glass. In my part of the world it is a Kuchentheke. Not just a place to store and display cakes. It is where they take the stage.
Now picture a Tiramisu cake, viewed through a fisheye lens. The distortion, the curvature, the way the image wraps around the edges – all of it hints at the need for a projection method that can handle such transformations. This blog explores how panoramic projections like Transverse Mercator relate to real-world visual experiences, starting with this sweet example:


❌ Equirectangular Projection

The equirectangular projection maps latitude and longitude directly onto a flat grid, making it easy to process and display panoramic images. However, with wide fields of view, it introduces noticeable distortion at the top, bottom, and sides. Straight lines curve unnaturally, and objects near the poles or edges appear stretched. While it is widely used for 360° viewers and stitching software, it is not ideal for realistic close-up scenes.


❌ Cylindric Projection

Unlike the equirectangular projection, the cylindrical projection introduces more distortion, especially in vertical lines since the vertical projection is rectilinear. This makes the center of the image appear more prominent, while the sides curve away, creating a tunnel-like effect. It is useful for immersive panoramas, but in wide-angle scenes, it can exaggerate the central area and distort peripheral objects.


❌ Rectilinear Projection

The rectilinear projection keeps straight lines straight, which is useful for architectural photography. However, when applied to wide-angle panoramic images, it introduces strong stretching at the edges. Objects on the left and right sides appear unnaturally large or distorted, especially in close-up scenes like a pastry display (Kuchentheke) photographed with a fisheye lens.


✅ Transverse Mercator Projection

The classic Mercator projection is widely known for its use in navigation maps, where it preserves angles and represents lines of constant bearing as straight. The Transverse Mercator is a rotated variant, where the cylindrical surface is aligned along a central meridian instead of the equator. This makes it especially useful for mapping narrow regions that extend north–south, such as countries or cities, with minimal distortion near the central axis.

In panoramic photography, the Transverse Mercator projection can be creatively applied to emphasize the central vertical axis of an image. It helps reduce distortion toward the edges and provides a more balanced appearance in wide-angle scenes — such as standing in front of a pastry display (Kuchentheke) and capturing it with a fisheye lens. The result is a projection that keeps the center prominent while minimizing distortion on the sides.


Only a few horizontal control points are needed to achieve good alignment. For this type of optimization, at least three horizontal control points are required.
Once the optimization is complete, the areas marked by green lines in the image will be perfectly horizontal.


Only yaw, pitch, and roll angles need to be optimized.
Usually it gets you a perfect result.



More of the same scene:



From A Day in Florence, Italy
🍰


See also Panotools projection, The Balcony Panorama, Panotools projections example and Stereographic projection.



Editing Equirectangular Panoramas via Cube Face Conversion in PTGui

20 Juli 2025


Editing equirectangular panoramic images can be challenging, especially near the zenit (top) and nadir (bottom) due to the heavy distortion in those areas. A practical solution is to convert the equirectangular image into cube faces, which represent the six sides of a cube (front, back, left, right, top, bottom). This format allows for easier and more precise editing. Once the modifications are complete, the cube faces can be reassembled into a seamless equirectangular panorama.

đŸ–Œïž Convert ➝ 🧊 Cube Faces ➝ đŸ–Œïž Edit ➝ 🔄 Reassemble ➝ ✅ Done


This guide outlines the complete process using PTGui:


🧊 Step 1: Load the Equirectangular Image into PTGui and convert to Cube Faces

  1. Open PTGui.
  2. In the "Extras" menu, select the option to convert to cube faces.
  3. Add the equirectangular image, set the Jpeg-Quality to 95 if you are using Jpeg, and click "Convert"




đŸ–Œïž Step 2: Edit the Cube Faces

Open the six undistorted cube face images in your preferred image editor and apply the necessary edits to the relevant face(s), such as removing a tripod from the nadir or retouching the sky in the zenit.
Save the edited images with the same filenames.


🔄 Step 3: Reassemble the Cube Faces into an Equirectangular Image

  1. Open PTGui.
  2. Load the six edited cube face images. You can simply drag and drop the cube face images from the explorer.


The images are automatically aligned for equirectangular output in the PTGui editor:


3. Go to the "Create Panorama" tab.
4. Choose your desired output resolution and click "Create Panorama".



Converting an equirectangular panorama into cube faces provides precise control over editing problematic areas like the nadir and zenit. PTGui simplifies this workflow, enabling seamless transitions between projections and accurate reassembly of the final panorama. This method is particularly effective for high-quality virtual tours, 360° photography, and professional post-processing tasks.


Thinking a step further, what you really need is the 15,3mm lens reported by PTGui:


As someone who's always appreciated Sigma for their forward-thinking designs, innovation and engineering excellence, I was genuinely pleased to see them take the idea of the CUBE FACE LENS and created one. With its 15,3mm focal length, its perfectly suited for capturing seamless panoramas.
Expect cheap Chinese clones to hit the market soon.
🔗 Reportedly, this lens can focus from 0,2m to 1AU (astronomical unit), so you can have the sun perfectly in focus.



Because sometimes, the best way to solve a problem 
 is to avoid it entirely in the first place. The 15,3mm cube face lens captures the world in exactly 90° intervals. Just six clean shots stitched with pixel-perfect seamlines, and leave the fisheye theatrics at the door.



Spokane, WA

16 Juli 2025


Spokane, Washington, nestled along the Spokane River in the eastern part of the state, is known for its rich history, vibrant arts scene, and stunning natural surroundings. Named after the Spokane Tribe, 'Children of the Sun' in the Salish language, the city reflects deep indigenous roots and natural beauty.


All pictures and panoramic images are taken with 1/1000s f/5,6 ISO 100/21° f=7,5mm, unless noted otherwise.


đŸ„ UW

Our journey begins at the University of Washington School of Medicine's Spokane campus, where the first panorama captures the academic heart of the city.






Interactive Panorama UW





🌳 Riverfront Park

Spokane's green centerpiece, once the site of Expo '74, is now a vibrant public space full of history and movement. Bridges connect the city to Havermale Island, where some panoramas were taken. The view here spans from the upper Spokane Falls to the Pavilion, capturing the park's dynamic blend of nature, architecture, and community life.

















This particular panorama proved trickier than expected. Without a tripod, aligning the frames by hand made it difficult to maintain precise rotation around the nodal point, which is essential for perfect stitching. I even added an extra frame to help with stitching, but small imperfections remain. Still, the result captures the essence of the scene, even if a few pixels had a mind of their own. Sometimes, the story behind the image is part of the image itself.

Interactive Panorama Spokane Pavilion




Interactive Panorama King Cole Woodbridge




Interactive Panorama Spokane Falls BrĂŒcke





🌊 Spokane River

The Spokane River winds through the city, carving its path through stone and story alike. Along its banks, trails, bridges and parks invite exploration. The panoramic images captures the river's flow near one of its quieter bends, where reflections of sky and trees ripple across the surface.


Framed by Steel: A View Through the Bridge



River bend



Sunlit Walk Along the Water



More Pictures Along the Riverside









A single dead tree stands between the walkway and the riverbank. Its bare branches reaching skyward in contrast to the lush greenery around it.
Why did it die? Was it disease, drought, or simply age?
Its presence adds a quiet tension to the scene, a reminder that even in places full of life and movement, stillness and decay have their place too.

Interactive Panorama Spokane River





🏱 Apartment Where We Stayed

Spokane offers a wide spectrum of hotel experiences, like a roulette wheel of hospitality. On one end, you've got places like the Ramada by Wyndham, where the décor is "early abandonment", the guests are... let's say colorful, and the rooms come with a complimentary layer of grime. On the other end, there are sleek 4-star hotels that promise luxury but sometimes deliver lukewarm service and Yelp reviews that read like cautionary tales. And in the middle? The classic 3-star American hotel, where breakfast includes a waffle machine, questionable eggs, and the lingering scent of disappointment. Choose wisely, or at least pack your sense of humor.

We were lucky. Tucked into a quiet neighborhood close to the campus, our apartment served as a perfect base for exploring the city. With morning light filtering through the windows and the scent of pine in the air, it offered a peaceful retreat.





Interactive Panorama Apartment 1



Interactive Panorama Apartment 2




✈ Airport

Our journey ends where we first arrived, and we leave Spokane behind with memories captured in light and lines. Spokane International Airport welcomes visitors with a mix of regional charm and modern convenience. The terminal's open design and surrounding pine-dotted landscape offer a first glimpse of the Inland Northwest's character.


Interactive Panorama C7


1/80s f/5,6 ISO 200/24° f=7,5mm


1/80s f/5,6 ISO 160/23° f=7,5mm

The 737 arrives


Taxi-in


Passenger boarding bridge attaches


Start refueling and unloading


The windows facing the airfield are tinted with a subtle blue hue, and be corrected by adjusting the white balance (photos were taken using the sunlight white balance setting).


Forty minutes later, we rolled into Seattle and the Spokane chapter came to a close, pixels packed, panoramas pending, and the last bit of sunlight archived in RAW.



AstrHori 6.5mm f/2.0 Fisheye Lens

03 Juli 2025


The AstrHori 6.5mm f/2 Fisheye Lens is a manual focus Circular Fisheye Lens for APS-C cameras with a 192° field of view.




Best general setting is at the 1m mark and f/5.6. This puts everything from near to infinity in focus.



The AstrHori 6.5mm Fisheye Lens fills the entire APS-C sensor with its 192° field of view, unlike the Laowa 4mm Circular Fisheye, which projects a 210° image circle that does not fully cover the frame.

AstrHori 6.5mm Laowa 4mm


However, with only 192° of coverage, the AstrHori 6.5mm makes it difficult to capture a full 360x180° panorama using just two images. In contrast, the Laowa 4mm performs much better in this regard thanks to its wider 210° field of view.


Example 360x180° panorama with two pictures using the AstrHori 6.5mm Fisheye Lens:

1/800s f/5,6 ISO 100/21° f=6,5mm


Both images must be perfectly aligned using a nodal point adapter. If the camera is even slightly off-axis, parallax errors can occur, which may lead to visible stitching artifacts like this because of the missing overlap:


A 360x180° panorama created from only two images relies solely on control points along the left and right edges. Unlike multi-image panoramas using 6+Z+N shots1, there is no flexibility for adjustment in other areas of the frame.


Interactive Panorama AstrHori 6.5mm Test 1


To improve the quality of a 360x180° panorama, three images should be taken at 120° intervals with the camera slightly tilted upward, along with an additional Nadir (bottom) shot to cover the ground area and eliminate potential shadows.

1/1000s f/5,6 ISO 100/21° f=6,5mm


The three slightly upward-tilted shots capture the sky seamlessly, while the Nadir takes care of the floor details:


But this only yields a final resolution of 8k by 4k. A two-shot fisheye panorama using the 4mm lens is 7k by 3.5k, which is already quite limited. In contrast, a full-frame fisheye panorama captured using 6+Z+N gets 16k by 8k.
All resolutions are based on a 20MP camera.


Interactive Panorama AstrHori 6.5mm Test 2


Surprisingly sharp in the corners for such an affordable lens. A clear improvement compared to the old Zenitar, which was my first fisheye lens and handled sharpness like it was optional and felt more like a Cold War relic than an optical instrument.
Not sure how the Peleng even compares, but for a circular fisheye on full-frame cameras at that time, it seems better suited for museum display than modern photography.

1/800s f/5,6 ISO 100/21° f=6,5mm


And nice sunstars:

1/800s f/5,6 ISO 100/21° f=6,5mm


Only a Circular Fisheye can capture this:

1/400s f/5,6 ISO 100/21° f=6,5mm


With the focus set to its minimum distance, the leaf is actually touching the front element of the lens. This is one of the drawbacks of this lens: you cannot make those funny fisheye closeup shots. The Laowa 4mm is much better in this regard with its extreme close focus capability.

1/800s f/5,6 ISO 100/21° f=6,5mm


More examples shot with the AstrHori 6.5mm lens on a Nikon Z30:

1/800s f/5,6 ISO 100/21° f=6,5mm


1/640s f/5,6 ISO 100/21° f=6,5mm


1/640s f/5,6 ISO 100/21° f=6,5mm


1/800s f/5,6 ISO 100/21° f=6,5mm


1/800s f/5,6 ISO 100/21° f=6,5mm


1/800s f/5,6 ISO 100/21° f=6,5mm


1/1000s f/5,6 ISO 100/21° f=6,5mm


1/1000s f/5,6 ISO 100/21° f=6,5mm


1/1000s f/5,6 ISO 100/21° f=6,5mm


1/1000s f/5,6 ISO 100/21° f=6,5mm



Summary

✅ AstrHori 6.5mm: Best for general fisheye photography, great sharpness, sunstars, and APS-C coverage.
✅ Laowa 4mm: Best for minimal-shot 360x180° panoramas and creative close-up fisheye fun.
✅ TTArtisan 7.5mm: Best for general 360x180° panoramas.
❌ AstrHori 6.5mm: Not ideal for close-ups or minimal-shot panoramas.
❌ Laowa 4mm: Weaker in flare resistance.
❌ TTArtisan 7.5mm: Beware the lens cap: it has a mind of its own and occasionally makes a break for freedom. Even with a fix in place. A true escape artist.


See also
TTArtisan 7.5mm f/2.0 Fisheye Lens
Laowa 4mm f/2.8 Fisheye Lens


  1. 6+Z+N refers to a common panoramic shooting technique used with full-frame fisheye lenses: six horizontal shots taken in portrait orientation around a central point, plus one shot each for the Zenith (top) and the Nadir (bottom) views. 


← Vorherige BeitrĂ€ge