Die Bellevue Connector Bridge â Licht, Schatten und der perfekte Moment
Die Bellevue Connector Bridge ist Teil eines stĂ€dtebaulichen Konzepts, das FuĂgĂ€nger und Radfahrer besser mit dem Stadtzentrum verbindet. Sie steht exemplarisch fĂŒr moderne Infrastruktur, die nicht nur funktional, sondern auch Ă€sthetisch ansprechend gestaltet ist.
Am Vormittag liegt die Seite der BrĂŒcke mit dem Mural1 im Schatten:
Erst am Nachmittag fĂ€llt Sonnenlicht direkt auf das Mural. Allerdings werfen dann auch die architektonischen Elemente der BrĂŒcke markante Schatten auf die Wand.
Kurz nach Mittag entsteht ein besonderer Moment: Die Sonne steht in einem Winkel, bei dem das Mural vollstĂ€ndig aus dem Schatten tritt, wĂ€hrend die BrĂŒckenarchitektur noch keine Schatten wirft. Ich habe diesen seltenen Lichtmoment genutzt, um das Panorama aufzunehmen. Fast so selten wie eine Sonnenfinsternis, nur ohne Schutzbrille und mit deutlich besserer Auflösung.
Die Nord-SĂŒd-Ausrichtung sorgt dafĂŒr, dass die Sonne einmal tĂ€glich exakt genug steht, um das Mural fĂŒr wenige Minuten wie eine BĂŒhne auszuleuchten. Ein Moment, in dem Architektur und Sonnenstand kurz in Konjunktion treten.
Lineares
Panorama: Eine Alternative zur klassischen Drehung
Die klassische Panorama-Fotografie basiert auf der Drehung der Kamera
um ihren Nodalpunkt. Diese Technik ermöglicht beeindruckende
Rundumaufnahmen und funktioniert besonders gut bei Szenen mit groĂer
Tiefenausdehnung. Doch was passiert, wenn das Motiv selbst langgestreckt
ist, wie etwa ein WandgemÀlde oder eine HÀuserfront, und sich nicht
sinnvoll durch Rotation erfassen lÀsst?
In solchen FĂ€llen bietet das lineare Panorama eine gute Alternative:
Statt die Kamera zu drehen, wird sie entlang einer geraden Linie bewegt.
Diese Methode eröffnet neue gestalterische Möglichkeiten und stellt
besondere Anforderungen an Projektion, Perspektive und Technik. Der
folgende Beitrag beleuchtet die Unterschiede zwischen klassischen und
linearen Panoramen und zeigt anhand eines konkreten Beispiels, wie ein
lineares Panorama entsteht.
Projektionstypen in
der Panorama-Fotografie
FĂŒr ein Bild mit einem Bildwinkel bis etwa 110° kann die rectilineare
Abbildung verwendet werden1.
Diese Projektion
bewahrt gerade Linien und eignet sich besonders fĂŒr Architektur- oder
Landschaftsaufnahmen mit moderatem Blickwinkel. Sobald der Bildwinkel
diesen Bereich ĂŒberschreitet, treten bei der rectilinearen Projektion
zunehmend starke Verzerrungen auf, insbesondere an den BildrÀndern.
Gerade Linien wirken dann ĂŒbermĂ€Ăig gedehnt, und das Bild verliert an
natĂŒrlicher Wirkung.
FĂŒr gröĂere Blickwinkel sind daher die Ă€quirektangulare oder
zylindrische Projektion besser geeignet. Sie verteilen die Verzerrung
gleichmĂ€Ăiger und ermöglichen ein harmonischeres Gesamtbild, besonders
bei Rundum-Panoramen oder Szenen mit einem Sichtfeld ĂŒber 180°.
Beim klassischen Panorama wird die Kamera fĂŒr die
einzelnen Bilder um ihren Nodalpunkt gedreht, um Parallaxfehler zu
vermeiden.
Vergleich von
Projektionstypen
Projektionstyp
Typischer Bildwinkel
Abbildungseigenschaften
Ideale Einsatzbereiche
Rectilinear
< 110°
Gerade Linien bleiben erhalten; starke Randstreckung ab 110°
WĂ€hrend die klassische Panorama-Technik bei weitwinkligen Szenen
hervorragend funktioniert, stöĂt sie bei langgestreckten Motiven wie
WandgemĂ€lden oder HĂ€userfronten entlang einer StraĂe an ihre Grenzen.
Die Drehung um den Nodalpunkt fĂŒhrt hier zu perspektivischen
Verzerrungen und einem unnatĂŒrlichen Bildaufbau, da sich die rĂ€umliche
Tiefe des Motivs nicht gleichmĂ€Ăig erfassen lĂ€sst.
Hier setzt das lineare Panorama an: Statt die Kamera
zu drehen, wird sie linear entlang des Motivs mit konstantem Abstand und
paralleler Ausrichtung bewegt. Das Ergebnis ist ein visuelles Band, das
die rÀumliche KontinuitÀt bewahrt und das Motiv in seiner gesamten LÀnge
zeigt. Diese Technik eignet sich besonders fĂŒr Szenen mit geringer
Tiefenausdehnung und groĂer horizontaler Ausdehnung, bei denen eine
klassische Panoramaaufnahme zu perspektivischen BrĂŒchen fĂŒhren
wĂŒrde.
Die lineare Methode bringt jedoch eigene technische und
gestalterische Herausforderungen mit sich, die bei der Planung und
Umsetzung berĂŒcksichtigt werden mĂŒssen:
Parallaxfehler durch hervorstehende Objekte wie StĂŒhle, Autos oder
Personen, die sich bei der Bewegung der Kamera unterschiedlich
ĂŒberlagern
Perspektivische Verzerrungen, da sich die Kamera seitlich bewegt und
dadurch die Fluchtlinien des Motivs beeinflusst werden
Bewegte Elemente wie Autos oder FuĂgĂ€nger, die zu Stitchingfehlern
oder Geisterbildern fĂŒhren können
LichtverÀnderungen entlang der Strecke, etwa durch Schattenwurf,
unterschiedliche Beleuchtung oder wechselnde Wetterbedingungen
Lineares Panorama am
Beispiel eines Murals
In diesem Projekt wird ein Mural2 dokumentiert, das
seitlich im Inneren der Bellevue
Connector Bridge angebracht ist und sich ĂŒber deren gesamte LĂ€nge
erstreckt. Es zeigt eine zusammenhÀngende Szene, die sich nur durch eine
lineare Kamerabewegung vollstÀndig und verzerrungsfrei erfassen
lÀsst.
Denn das Wandbild passt nicht in ein einziges (Fisheye) Bild.
Und das GelĂ€nder passt nicht zur Idee fĂŒr mehr Abstand einfach mal eben
drĂŒberzusteigen.
Um das Mural abzubilden, wird die Kamera linear entlang des Motivs
mit konstantem Abstand und paralleler Ausrichtung bewegt3.
Wie beim klassischen Panorama sind manuelle Einstellungen fĂŒr
Belichtung, WeiĂabgleich und Fokus entscheidend fĂŒr konsistente
Ergebnisse. Weiterhin ist zu beachten:
Kamerabewegung: Linear entlang der StraĂe â z. B. auf einem Slider,
Fahrrad oder zu FuĂ mit Markierungen
Konstanter Abstand: Möglichst gleichbleibend, z. B. 5 m zur
HĂ€userfront
Horizontale Ausrichtung: Kamera bleibt parallel zum Motiv
Ăberlappung: 20â50Â % zwischen den Bildern
Die Rectilinearprojektion fĂŒhrt zu Verzerrungen in den Randbereichen
â Ă€hnlich wie bei einem Weitwinkelobjektiv.
Um ein lineares Panorama zu erstellen, wird eine (fast) orthogonale
Projektion verwendet. Der resultierende kleine Bildwinkel minimiert
Verzerrungen. Dadurch lassen sich Panoramen erstellen, die aufgrund des
erforderlichen groĂen Blickwinkels sonst nicht abbildbar wĂ€ren.
Die Optimierung ergab in diesem Beispiel eine effektive Brennweite von
etwa 1400 mm, entsprechend einem Bildwinkel von etwa horizontal 8° und
vertikal 1°.
Dasselbe Verfahren findet auch beim Zusammensetzen von Scans
Anwendung (Mosaik). Die dabei verwendete orthogonale Projektion ist der
Grund, warum das mit Fisheye-Bildern nicht funktioniert. Sie kann nur
auf rectilineare Bilder angewendet werden, genauso wenig wie ein
gekrĂŒmmter Spiegel parallele Linien korrekt reflektieren kann.
Panorama-Erstellung in PTGui
Im ersten Schritt werden sÀmtliche Bilder in PTGui importiert, um mit
der Panorama-Erstellung zu beginnen.
FĂŒr jedes Einzelbild werden horizontale (grĂŒn) und vertikale (rot)
Kontrollpunkte gesetzt.
Zwischen den Bildern werden zusÀtzlich horizontale Kontrollpunkte (gelb)
eingefĂŒgt, um eine gleichmĂ€Ăige Ausrichtung des Panoramas
sicherzustellen. Auch zwischen dem ersten und letzten Bild werden
horizontale Kontrollpunkte gesetzt, um die Gesamtgeometrie
auszurichten.
FĂŒr jedes einzelne Bild werden horizontale Kontrollpunkte
gesetzt.
ZusÀtzlich zu den normalen Kontrollpunkten zwischen den Bildern
werden horizontale Kontrollpunkte eingefĂŒgt.
Die Projektion wird auf âRectilinearâ gesetzt. FĂŒr alle Bilder auĂer
dem ersten Bild wird die individuelle Optimierung fĂŒr Objektiv und
Verschiebung gesetzt.
ZunĂ€chst ohne Blickwinkel, Parameter âbâ und Verschiebung optimieren,
um die Bilder grob auszurichten.
Dann wird mit Blickwinkel, Parameter âbâ und Verschiebung optimiert.
Ein kleiner horizontaler und vertikaler Bildwinkel reduziert
Verzerrungen an den BildrÀndern. Bei einer Optimierung mit der
tatsĂ€chlichen Objektivbrennweite lĂ€ge der Blickwinkel ĂŒber 180 Grad und
das Panorama lieĂe sich nicht korrekt erzeugen.
Das
Ergebnis: Ein lineares Panorama in voller LĂ€nge
Aus 11 Einzelbildern entsteht ein durchgehendes Panorama mit
44135Â ĂÂ 3242 Bildpunkten (143,1Â MP, 61,4 MB), das die gesamte Szene in
hoher Detailtreue abbildet. Die Aufnahme wurde mit der Z50
II bei
18 mm Brennweite erstellt und anschlieĂend gemÀà der beschriebenen
Schritte in PTGui zusammengesetzt.
1/320s f/6,3 ISO 100/21° 18-140mm f/3,5-6,3 VR
f=18mm/27mm
Linear
Panorama: An Alternative to Classical Rotation
Classical panoramic photography relies on rotating the camera around
its nodal point. This technique enables impressive 360° captures and
works especially well for scenes with significant depth. But what if the
subject itself is elongatedâlike a mural or a row of buildingsâand
cannot be effectively captured through rotation?
In such cases, the linear panorama offers a compelling alternative:
instead of rotating the camera, it is moved along a straight path. This
method opens up new creative possibilities and introduces unique
challenges in projection, perspective, and technique. The following
article explores the differences between classical and linear panoramas
and illustrates how a linear panorama is created using a real-world
example.
Projection Types in
Panoramic Photography
For images with a field of view up to approximately 110°, the
rectilinear projection can be used1. This projection
preserves straight lines and is ideal for architectural or landscape
shots with moderate angles. Once the field of view exceeds this range,
rectilinear projection introduces strong distortions, especially at the
edges. Straight lines appear overly stretched, and the image loses its
natural appearance.
For wider fields of view, equirectangular or cylindrical projections
are better suited. These distribute distortion more evenly and produce a
more harmonious overall image, especially for full panoramas or scenes
with a field of view over 180°.
In classical panoramas, the camera is rotated around
its nodal point to avoid parallax errors.
Comparison of Projection
Types
Projection type
Typical image angle
Mapping properties
Ideal areas of application
Rectilinear
< 110°
Straight lines are preserved; Strong edge stretching from 110°
Architecture, landscapes with a moderate field of view
Uniform image in both axes; suitable for spherical panoramas
360° panoramas, virtual tours, immersive scenes
While classical panorama techniques work well for wide-angle scenes,
they struggle with elongated subjects like murals or building facades
along a street. Rotating around the nodal point introduces perspective
distortions and an unnatural composition, as the spatial depth of the
subject cannot be evenly captured.
This is where the linear panorama comes in: instead
of rotating the camera, it is moved linearly along the subject with
constant distance and parallel alignment. The result is a visual ribbon
that preserves spatial continuity and displays the subject in its full
length. This technique is especially suitable for scenes with low depth
and large horizontal extent, where classical panoramas would cause
perspective breaks.
However, the linear method introduces its own technical and creative
challenges:
Parallax errors from protruding objects like chairs, cars, or people
that overlap differently during camera movement
Perspective distortions due to lateral camera movement affecting
vanishing lines
Moving elements like cars or pedestrians causing stitching errors or
ghosting
Lighting changes along the path, such as shadows, varying
illumination, or changing weather
Linear Panorama Example: A
Mural
This project documents a mural2, spanning its entire
length inside the Bellevue
Connector Bridge. It depicts a continuous scene that can only be
captured fully and distortion-free through linear camera movement.
The mural doesnât fit into a single (fisheye) image. And the railing
isnât suitable for simply stepping over to gain more distance.
To capture the mural, the camera is moved linearly along the subject
with constant distance and parallel alignment3.
As with classical panoramas, manual settings for exposure, white
balance, and focus are crucial for consistent results. Additionally:
Camera movement: Linear along the street â e.g., on a slider,
bicycle, or on foot with markers
Constant distance: Ideally consistent, e.g., 5 m from the building
facade
Horizontal alignment: Camera remains parallel to the subject
Overlap: 20â50% between images
The rectilinear projection causes edge distortionsâsimilar to a
wide-angle lens.
To create a linear panorama, a (nearly) orthogonal projection is
used. The resulting small field of view minimizes distortions. This
allows panoramas to be created that would otherwise be impossible due to
the required wide field of view.
In this example, optimization resulted in an effective focal length
of approximately 1400 mm, corresponding to a field of view of about 8°
horizontal and 1° vertical.
This same technique is used in scan stitching (mosaics). The
orthogonal projection applied here is why fisheye images donât work. It
can only be applied to rectilinear imagesâjust as a curved mirror cannot
reflect parallel lines correctly.
Panorama Creation in PTGui
The first step is importing all images into PTGui to begin panorama
creation.
For each image, horizontal (green) and vertical (red) control points
are set. Horizontal control points (yellow) are also added between
images to ensure consistent alignment. Horizontal control points are
also placed between the first and last image to align the overall
geometry.
Each image receives horizontal control points.
In addition to regular control points between images, horizontal
control points are added.
The projection is set to âRectilinear.â For all images except the
first, individual optimization for lens and shift is applied.
First, optimize without field of view, parameter âbâ, and shift to
roughly align the images. Then optimize with field of view, parameter
âbâ, and shift.
A small horizontal and vertical field of view reduces edge
distortions. If optimized using the actual lens focal length, the field
of view would exceed 180°, making correct panorama creation
impossible.
The Result: A
Full-Length Linear Panorama
From 11 individual images, a continuous panorama of 44135Â ĂÂ 3242
pixels (143.1Â MP, 61.4 MB) is created, capturing the entire scene in
high detail. The shot was taken with the Z50 II at
18Â mm focal length and stitched in PTGui as described.
1/320s f/6.3 ISO 100/21° 18-140mm f/3.5-6.3 VR
f=18mm/27mm
The equirectangular projection maps latitude and longitude directly onto a flat grid, making it easy to process and display panoramic images. However, with wide fields of view, it introduces noticeable distortion at the top, bottom, and sides. Straight lines curve unnaturally, and objects near the poles or edges appear stretched. While it is widely used for 360° viewers and stitching software, it is not ideal for realistic close-up scenes.
â Cylindric Projection
Unlike the equirectangular projection, the cylindrical projection introduces more distortion, especially in vertical lines since the vertical projection is rectilinear. This makes the center of the image appear more prominent, while the sides curve away, creating a tunnel-like effect. It is useful for immersive panoramas, but in wide-angle scenes, it can exaggerate the central area and distort peripheral objects.
â Rectilinear Projection
The rectilinear projection keeps straight lines straight, which is useful for architectural photography. However, when applied to wide-angle panoramic images, it introduces strong stretching at the edges. Objects on the left and right sides appear unnaturally large or distorted, especially in close-up scenes like a pastry display (Kuchentheke) photographed with a fisheye lens.
â Transverse Mercator Projection
The classic Mercator projection is widely known for its use in navigation maps, where it preserves angles and represents lines of constant bearing as straight. The Transverse Mercator is a rotated variant, where the cylindrical surface is aligned along a central meridian instead of the equator. This makes it especially useful for mapping narrow regions that extend northâsouth, such as countries or cities, with minimal distortion near the central axis.
In panoramic photography, the Transverse Mercator projection can be creatively applied to emphasize the central vertical axis of an image. It helps reduce distortion toward the edges and provides a more balanced appearance in wide-angle scenes â such as standing in front of a pastry display (Kuchentheke) and capturing it with a fisheye lens. The result is a projection that keeps the center prominent while minimizing distortion on the sides.
Only a few horizontal control points are needed to achieve good alignment. For this type of optimization, at least three horizontal control points are required.
Once the optimization is complete, the areas marked by green lines in the image will be perfectly horizontal.
Only yaw, pitch, and roll angles need to be optimized.
Usually it gets you a perfect result.
Editing equirectangular panoramic images can be challenging, especially near the zenit (top) and nadir (bottom) due to the heavy distortion in those areas. A practical solution is to convert the equirectangular image into cube faces, which represent the six sides of a cube (front, back, left, right, top, bottom). This format allows for easier and more precise editing. Once the modifications are complete, the cube faces can be reassembled into a seamless equirectangular panorama.
This guide outlines the complete process using PTGui:
đ§ Step 1: Load the Equirectangular Image into PTGui and convert to Cube Faces
Open PTGui.
In the "Extras" menu, select the option to convert to cube faces.
Add the equirectangular image, set the Jpeg-Quality to 95 if you are using Jpeg, and click "Convert"
đŒïž Step 2: Edit the Cube Faces
Open the six undistorted cube face images in your preferred image editor and apply the necessary edits to the relevant face(s), such as removing a tripod from the nadir or retouching the sky in the zenit.
Save the edited images with the same filenames.
đ Step 3: Reassemble the Cube Faces into an Equirectangular Image
Open PTGui.
Load the six edited cube face images. You can simply drag and drop the cube face images from the explorer.
The images are automatically aligned for equirectangular output in the PTGui editor:
3. Go to the "Create Panorama" tab.
4. Choose your desired output resolution and click "Create Panorama".
Converting an equirectangular panorama into cube faces provides precise control over editing problematic areas like the nadir and zenit. PTGui simplifies this workflow, enabling seamless transitions between projections and accurate reassembly of the final panorama. This method is particularly effective for high-quality virtual tours, 360° photography, and professional post-processing tasks.
Thinking a step further, what you really need is the 15,3mm lens reported by PTGui:
As someone who's always appreciated Sigma for their forward-thinking designs, innovation and engineering excellence, I was genuinely pleased to see them take the idea of the CUBE FACE LENS and created one. With its 15,3mm focal length, its perfectly suited for capturing seamless panoramas.
Expect cheap Chinese clones to hit the market soon.
đ
Reportedly, this lens can focus from 0,2m to 1AU (astronomical unit), so you can have the sun perfectly in focus.
Because sometimes, the best way to solve a problem ⊠is to avoid it entirely in the first place. The 15,3mm cube face lens captures the world in exactly 90° intervals. Just six clean shots stitched with pixel-perfect seamlines, and leave the fisheye theatrics at the door.
Spokane, Washington, nestled along the Spokane River in the eastern part of the state, is known for its rich history, vibrant arts scene, and stunning natural surroundings. Named after the Spokane Tribe, 'Children of the Sun' in the Salish language, the city reflects deep indigenous roots and natural beauty.
All pictures and panoramic images are taken with 1/1000s f/5,6 ISO 100/21° f=7,5mm, unless noted otherwise.
đ„ UW
Our journey begins at the University of Washington School of Medicine's Spokane campus, where the first panorama captures the academic heart of the city.
Spokane's green centerpiece, once the site of Expo '74, is now a vibrant public space full of history and movement. Bridges connect the city to Havermale Island, where some panoramas were taken.
The view here spans from the upper Spokane Falls to the Pavilion, capturing the park's dynamic blend of nature, architecture, and community life.
This particular panorama proved trickier than expected. Without a tripod, aligning the frames by hand made it difficult to maintain precise rotation around the nodal point, which is essential for perfect stitching. I even added an extra frame to help with stitching, but small imperfections remain.
Still, the result captures the essence of the scene, even if a few pixels had a mind of their own. Sometimes, the story behind the image is part of the image itself.
The Spokane River winds through the city, carving its path through stone and story alike. Along its banks, trails, bridges and parks invite exploration. The panoramic images captures the river's flow near one of its quieter bends, where reflections of sky and trees ripple across the surface.
Framed by Steel: A View Through the Bridge
River bend
Sunlit Walk Along the Water
More Pictures Along the Riverside
A single dead tree stands between the walkway and the riverbank. Its bare branches reaching skyward in contrast to the lush greenery around it.
Why did it die? Was it disease, drought, or simply age?
Its presence adds a quiet tension to the scene, a reminder that even in places full of life and movement, stillness and decay have their place too.
We were lucky. Tucked into a quiet neighborhood close to the campus, our apartment served as a perfect base for exploring the city. With morning light filtering through the windows and the scent of pine in the air, it offered a peaceful retreat.
Our journey ends where we first arrived, and we leave Spokane behind with memories captured in light and lines.
Spokane International Airport welcomes visitors with a mix of regional charm and modern convenience. The terminal's open design and surrounding pine-dotted landscape offer a first glimpse of the Inland Northwest's character.
The windows facing the airfield are tinted with a subtle blue hue, and be corrected by adjusting the white balance (photos were taken using the sunlight white balance setting).
Forty minutes later, we rolled into Seattle and the Spokane chapter came to a close, pixels packed, panoramas pending, and the last bit of sunlight archived in RAW.
The AstrHori 6.5mm f/2 Fisheye Lens is a manual focus Circular Fisheye Lens for APS-C cameras with a 192° field of view.
Best general setting is at the 1m mark and f/5.6. This puts everything from near to infinity in focus.
The AstrHori 6.5mm Fisheye Lens fills the entire APS-C sensor with its 192° field of view, unlike the Laowa 4mm Circular Fisheye, which projects a 210° image circle that does not fully cover the frame.
AstrHori 6.5mm
Laowa 4mm
However, with only 192° of coverage, the AstrHori 6.5mm makes it difficult to capture a full 360x180° panorama using just two images. In contrast, the Laowa 4mm performs much better in this regard thanks to its wider 210° field of view.
Example 360x180° panorama with two pictures using the AstrHori 6.5mm Fisheye Lens:
1/800s f/5,6 ISO 100/21° f=6,5mm
Both images must be perfectly aligned using a nodal point adapter. If the camera is even slightly off-axis, parallax errors can occur, which may lead to visible stitching artifacts like this because of the missing overlap:
A 360x180° panorama created from only two images relies solely on control points along the left and right edges. Unlike multi-image panoramas using 6+Z+N shots1, there is no flexibility for adjustment in other areas of the frame.
To improve the quality of a 360x180° panorama, three images should be taken at 120° intervals with the camera slightly tilted upward, along with an additional Nadir (bottom) shot to cover the ground area and eliminate potential shadows.
1/1000s f/5,6 ISO 100/21° f=6,5mm
The three slightly upward-tilted shots capture the sky seamlessly, while the Nadir takes care of the floor details:
But this only yields a final resolution of 8k by 4k. A two-shot fisheye panorama using the 4mm lens is 7k by 3.5k, which is already quite limited. In contrast, a full-frame fisheye panorama captured using 6+Z+N gets 16k by 8k.
All resolutions are based on a 20MP camera.
Surprisingly sharp in the corners for such an affordable lens. A clear improvement compared to the old Zenitar, which was my first fisheye lens and handled sharpness like it was optional and felt more like a Cold War relic than an optical instrument.
Not sure how the Peleng even compares, but for a circular fisheye on full-frame cameras at that time, it seems better suited for museum display than modern photography.
1/800s f/5,6 ISO 100/21° f=6,5mm
And nice sunstars:
1/800s f/5,6 ISO 100/21° f=6,5mm
Only a Circular Fisheye can capture this:
1/400s f/5,6 ISO 100/21° f=6,5mm
With the focus set to its minimum distance, the leaf is actually touching the front element of the lens. This is one of the drawbacks of this lens: you cannot make those funny fisheye closeup shots. The Laowa 4mm is much better in this regard with its extreme close focus capability.
1/800s f/5,6 ISO 100/21° f=6,5mm
More examples shot with the AstrHori 6.5mm lens on a Nikon Z30:
1/800s f/5,6 ISO 100/21° f=6,5mm
1/640s f/5,6 ISO 100/21° f=6,5mm
1/640s f/5,6 ISO 100/21° f=6,5mm
1/800s f/5,6 ISO 100/21° f=6,5mm
1/800s f/5,6 ISO 100/21° f=6,5mm
1/800s f/5,6 ISO 100/21° f=6,5mm
1/1000s f/5,6 ISO 100/21° f=6,5mm
1/1000s f/5,6 ISO 100/21° f=6,5mm
1/1000s f/5,6 ISO 100/21° f=6,5mm
1/1000s f/5,6 ISO 100/21° f=6,5mm
Summary
â AstrHori 6.5mm: Best for general fisheye photography, great sharpness, sunstars, and APS-C coverage.
â Laowa 4mm: Best for minimal-shot 360x180° panoramas and creative close-up fisheye fun.
â TTArtisan 7.5mm: Best for general 360x180° panoramas.
â AstrHori 6.5mm: Not ideal for close-ups or minimal-shot panoramas.
â Laowa 4mm: Weaker in flare resistance.
â TTArtisan 7.5mm: Beware the lens cap: it has a mind of its own and occasionally makes a break for freedom. Even with a fix in place. A true escape artist.
6+Z+N refers to a common panoramic shooting technique used with full-frame fisheye lenses: six horizontal shots taken in portrait orientation around a central point, plus one shot each for the Zenith (top) and the Nadir (bottom) views. ↩